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Abstract
Background and objective. Inflammation is closely correlated with diabetes and diabetic complications. 

Research has shown that individuals with diabetes exhibit an upregulation of circulatory proinflammatory 
cytokines, resulting in a chronic state of low-grade inflammation. The participation of inflammation in the 
pathogenesis of diabetic complications, particularly cardiovascular and renal complications, is well-established. 
Targeting inflammation may produce prominent effects in improving the clinical condition of diabetic 
patients, reducing the progression of complications, and promoting glucose uptake by insulin-sensitive tissues. 
This review article aimed to explore the anti-inflammatory effect of antidiabetics beyond their hypoglycemic 
action and the potential effects of such antidiabetics in reducing diabetic complications.

 Materials and methods. Based on relevant online publications using the terms anti-diabetics, anti-
inflammatory, diabetic complications, and inflammatory mediators up to February 2024 on PubMed and 
Google Scholar were utilized to construct this review. 

Results. The majority of antidiabetic drugs pose an indirect effect on inflammation through the hypogly
cemic effect. However, many antidiabetics have an additional anti-inflammatory mechanism independently 
of their hypoglycemic effects, which augments their anti-inflammatory effects. 

Conclusion. Suppression of the inflammatory response by anti-diabetics and achieving homeostatic 
control is an effective approach for preventing diabetic complications.
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INTRODUCTION 
Insulin resistance (InRs) results when cells are una-

ble to respond normally to insulin. This leads to an in-
crease in the risk of diabetes mellitus type 2 (DM 2) 
development. A combination of genetics and environ-
mental factors including obesity leads to InRs and con-
sequently, DM 2 [1]. InRs could be caused by an inflam-
matory response resulting from immune system 
activation. This Inflammation has the potential to ag-
gravate diabetes and other medical conditions. Circu-
lating proinflammatory cytokines are upregulated in 
DM 2, leading to a persistent inflammatory state in a 
low-grade [2]. Therefore, inflammation has been pro-
posed as a potential mechanism to explain the patho-
physiology of DM 2. According to this mechanism, local 
stressful circumstances promote the production of cy-
tokines and other proinflammatory signals including 
interleukins (IL), tumor necrosis factor α (TNF-α), 
monocyte chemoattractant protein-1 (MCP-1), and an-
giotensinogen. Adipocyte-secreted adipokines, includ-
ing resistin, leptin, and adiponectin, can also impact 
DM 2 and inflammation [3]. 

Complications of DM 2 are aggravated by the in-
flammatory responses. The elevated inflammatory me-
diators in the presence of hyperglycemia participate in 
increasing prostaglandin synthesis, promote leukocyte 
and macrophage recruitment, upregulate fibronectin, 
increase the permeability of vascular endothelial cells 
and stimulate the renin-angiotensin system (RAS) [4].

The pathophysiology of diabetic complications, es-
pecially those related to the heart and kidneys are high-
ly contributed to the activated immune system in dia-
betics. DM 2 is a condition that plays a major role in 
endothelial dysfunction that is developed in atheroscle-
rosis [5]. The disruption of nitric oxide (NO) bioavaila-
bility and the promotion of reactive oxygen species 
(ROS) generation from vascular endothelial cells occurs 
due to the overexpression of advanced glycation end 
products (AGEs) and their receptors, receptors for ad-
vanced glycation end products (RAGE) [6]. This leads to 
cross-linking of proteins and changes in their conforma-
tions, altered extracellular matrix composition, acceler-
ated atherosclerosis, and dysfunction of the endotheli-
al tissues [7]. In addition, the excessive production of 
AGEs and ROS facilitates the recruitment of monocytes, 
oxidation of low-density lipoproteins, and finally the 
development of foam cells [8].

Renal inflammation significantly contributes to the 
pathophysiological processes leading to the progres-
sion of diabetic kidney disease. The inflammatory con-
dition is aggravated hyperglycemia and elevated levels 
of AGEs, leading to the subsequent release of damaged 
molecules and the activation of pattern recognition re-
ceptors including RAGE and toll-like receptors (TLRs) 
[9]. As evidenced by kidney biopsies, macrophages at-
tack glomeruli and renal interstitial tissues due to the 
recruitment and differentiation of bone marrow-de-
rived monocytes. The extent of macrophage accumula-
tion has also been linked to progression towards end-
stage kidney disease (ESKD) [10]. In addition to 
macrophages, individuals with DM 2 have elevated lev-
els of activated T cells in the renal concentration, which 
can be attributed to the presence of proteinuria. High 
levels of CRP is strongly correlated with diabetic ne-
phropathy among individuals of African-American in 
the Jackson Heart Study [11].

In the course of diabetic retinopathy, early in the 
course of diabetes, there is increased mRNA expression 
for TNF-α and IL-1 in the retina. Moreover, it has been 
demonstrated that TNF-α inhibition helps to avoid early 
diabetic retinopathy. Higher levels of pro-inflammatory 
cytokines, which have been associated with the occur-
rence and progression of retinal injury, have been found 
in the vitreous fluid of individuals with proliferative dia-
betic retinopathy. According to these findings, persis-
tent low-grade subclinical inflammation is a major con-
tributing factor to the development of diabetic 
retinopathy [12]. The precise physiological mechanism 
that initiates inflammation in InRs is not fully under-
stood. One theory is related to adipose tissue as a path-
ogenic site of InRs, expansion of adipose tissues leading 
to hypertrophy and hyperplasia of adipocytes that im-
pede local oxygen supply and initiate stress conditions 
[13]. 

Local stressful circumstances promote the produc-
tion of cytokines and other proinflammatory signals. 
Generally, the elevated levels of the inflammatory me-
diators associated with adiposity can interfere with ei-
ther of two major pathways that interfere with insulin 
signaling, the c-Jun N-terminal kinase (JNK) or IKappa B 
kinase-β (IKK-β)/Nuclear factor kappa B (NF-kappa B) 
pathways [14]. JNK pathway results in the phosphoryla-
tion of serine residues of insulin receptor substrate-1 
(IRS-1), inhibiting the activation of protein kinase B 
(Akt), which mediates insulin action, while the activa-
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tion of the IKK β/NF-Kappa B pathway results in releas-
ing NF-Kappa B from the cytoplasm to the nucleus 
which stimulates the transcription of inflammatory me-
diators. Proinflammatory cytokines such as TNF-α and 
IL-1-β activate JNK and IKK β/NF-Kappa B by pattern 
recognition receptors, known as surface proteins that 
recognize foreign substances such as the TLRs and the 
RAGE as shown in (Figure 1), which further worsen InRs 
[15].

TARGETING INFLAMMATION IN  
DIABETIC PATIENTS 

As inflammation plays a significant role in the patho-
physiology of DM 2 and InRs, targeting inflammation 
may produce prominent effects in improving the clini-
cal condition of diabetic patients, reducing the progres-
sion of complications, and promoting glucose uptake by 
insulin-sensitive tissues. Therefore, it is considered that 
lowering the inflammatory response to diabetes and 
achieving homeostatic control is an effective approach 
to prevent diabetic complications [16]. Since chronic 
hyperglycemia is strongly correlated with the activation 
of inflammatory mediators both directly or indirectly 
through the formation of free radicals and oxidative 
stress, the majority of antidiabetic drugs pose an indi-
rect effect on inflammation through the hypoglycemic 

effect [17]. However, many antidiabetics have an addi-
tional anti-inflammatory mechanism independently of 
their hypoglycemic effects, which augments their an-
ti-inflammatory effects and subsequently, further re-
duces diabetic complication risk [18]. 

This review article aimed to explore the anti-inflam-
matory effect of antidiabetics beyond their hypoglyce-
mic action and the potential effects of such antidiabet-
ics in reducing diabetic complications.   

ANTIDIABETICS WITH  
ANTI-INFLAMMATORY PROPERTIES 

Metformin 
Adenosine monophosphate-activated protein ki-

nase (AMPK) is a significant potential target of met-
formin. Beyond the glycemic control, metformin may 
have other actions including anti-inflammatory action. 
Such effects may be useful in preventing diabetic vascu-
lar complications  [19]. The exact mechanism by which 
metformin produces an anti-inflammatory effect is not 
fully understood. Metformin produces an anti-inflam-
matory effect by either direct or indirect effects. The 
indirect action of metformin on inflammation is the 
consequence of the main action of glycemic control 
and weight loss, both have favorable effects in reducing 

FIGURE 1. Inflammatory pathways linking inflammation to InRs [15]. Serine kinase phosphorylation of IRS results from activation of 
the JNK and NF-kB pathways. This may block insulin signaling and ultimately induce IR. Furthermore, proinflammatory cytokines are 
produced by the JNK and NF-kB pathways, and these cytokines may then function as activation stimuli for the pathways. 
Mem – membrane; TLRs – tool-like receptors; TNF-α – tumor necrosis factor alpha TNFR, tumor necrosis factor receptor; RAGE – receptor 
for advanced glycation end products; JNK – c-jun N-terminal kinase; ROS – reactive oxygen species; IKB – inhibitor of NF-kappaB; IKK-β 
– IKappaB kinase β; NF-k-B – nuclear factor-kappa-B; IRS-1 – insulin receptor substrate 1; AP-1 – activating protein 1; MCP-1 – monocyte 
chemoattractant protein-1; IL– interleukin
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inflammation in diabetic patients. Direct effects can oc-
cur through various mechanisms. Direct inhibition of 
NF-Kappa B through activation of AMPK seems to be 
the most important mechanism [20]. 

Additionally, metformin improves the formation of 
NO, reduces ROS, and has inhibitory effects on the for-
mation of AGEs, which are known to stimulate inflam-
mation and ROS production as shown in (Figure 2) [21]. 
Metformin protects against cardiovascular disease 
(CVD) that are related to inflammatory stress. It causes 
anti-inflammatory and anti-angiogenic effects by in-
creasing thrombospondin-1, which in turn lowers plas-
minogen activator inhibitor-1 (PAI-1) concentrations 
and increases fibrinolytic activity [22]. Patients with 
chronic kidney disease frequently have persistent sys-
temic inflammation. Metformin prevents kidney dam-
age by reducing inflammation triggered by a variety of 
stressors, according to preclinical research. Despite the 
renal protective properties of metformin, there is still a 
considerable amount of caution about therapeutic ap-
plication in kidney disorders due to the risk of lactic ac-
idosis. Thus, metformin, renal damage, and lactic aci-
dosis all interact in complex manners [23]. 

Regarding the neuroprotective action of metformin, 
the effect on neurological diseases is variable and con-
dition-specific. However, metformin shows promising 
effects as a potential candidate in the management of 
Alzheimer’s disease  [24].

Thiazolidinediones (TAZDs)
TAZDs act as a selective antagonist for peroxisome 

proliferator-activated receptors (PPAR-γ), decreasing 
insulin resistance and enhancing glucose uptake. The 

TAZDs exhibit significant anti-inflammatory properties 
[25]. The TAZDs have been observed to exert a direct 
inhibitory effect on inflammation through the inhibi-
tion of macrophage activation and the reduction of 
production and release of several proinflammatory  
mediators, including C-reactive protein (CRP), matrix 
metalloproteinase-9 (MMP-9), PAI-1, IL-1, and IL-6, as 
shown in both in vitro and in vivo studies. Evidence 
from in vitro studies suggests that TAZDs can affect the 
inflammatory response by influencing the activities of 
monocytes and macrophages [26]. 

In vivo, TAZDS therapy reduces blood levels of 
NF-kappa B while raising inhibitors of nuclear factor 
kappa B (IKB) expression in the same cells. Moreover, in 
both the overweight and the diabetic, therapy with 
TAZDs reduces plasma levels of CRP, MMP9, PAI-1, and 
a soluble cluster of differentiation-40 (sCD40). The acti-
vation of PPAR-γ agonist led to a reduction in urine al-
bumin excretion and improvement in glomerulosclero-
sis [27]. 

Furthermore, it was found that pioglitazone therapy 
resulted in a subsequent reduction in inflammation, fi-
brosis, and matrix accumulation in the diabetic kidney. 
Additionally, pioglitazone treatment improves the re-
covery from behavioral abnormalities during neuro-
pathic pain associated with transection of the tibial and 
sural nerves, as well as inflammation caused by carra-
geenan, damage to sparing nerves, and neuropathy 
caused by transection of the L5 nerve [28].  In addition, 
by suppressing glial activation and TLR-4 expression,  
pioglitazone exhibited an antiallodynic effect in a rat 
model of neuropathic pain. This, in turn, prevented the 
release of proinflammatory cytokines. As a result, 

FIGURE 2. Potential anti-inflammatory mechanisms of metformin [21]. Metformin affects inflammation either by direct or indirect 
effects. Direct effect can be achieved through the activation of AMPK that results in inhibition of NF-KappaB, blocks AGEs formation 
increases the level of nitric oxide, and reduces oxidative reactants. Indirect effects occur by improving glycemic control and weight loss. 
The grey pathway represents the main anti-inflammatory mechanism. 
AMPK – AMP-activated protein kinase; AGEs – advanced glycation end products; NO – nitric oxide; NF-KappaB – nuclear factor Kaapa B
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PPAR-γ agonists could be considered a novel therapeu-
tic approach for the management of neuropathic pain 
by inhibiting the production of hyperalgesia [29].

Sulfonylurea and meglitinides
Sulfonylurea stimulates the beta cells to secrete 

more insulin by blocking ATP‐sensitive potassium chan-
nels. Sulfonylureas have been shown to have direct and 
indirect anti-inflammatory effects. In this regard, the 
increased expression of potassium channels in mono-
cytes and macrophages could provoke inflammatory 
responses by the mitogen-activated protein kinase 
(MAPKs)/NF‐kappa B‐dependent pathway. Therefore, 
sulfonylureas may decrease inflammatory response by 
blocking these channels [17]. Sulfonylureas may also 
have an anti-inflammatory effect due to their antioxi-
dant properties and by blocking the nucleotide-binding 
domain, leucine-rich–containing family, and pyrin–con-
taining–3 (NLRP3) inflammasome. Despite their anti-in-
flammatory properties, sulfonylureas have not been 
shown to improve vascular outcomes for DM patients 
[30]. When compared to metformin and pioglitazone, 
the anti-inflammatory effect of sulfonylurea is less po-
tent despite having some effects on the production of 
cytokines [31]. Meglitinides bind to the potassium ATP 
channel on the pancreatic beta cell to act as sulfony-
lureas. Meglitinides do not appear to have any anti-in-
flammatory properties [32].

Sodium-glucose cotransporter inhibitors (SGLT2-I)
SGLT2-I blocks SGLT2, which are responsible for glu-

cose reabsorption in renal proximal convoluted tubules, 
leading to glycosuria and reduction in blood glucose 
levels. SGLT2-I has been shown to reduce inflammation 
in both direct and indirect ways. Direct way involves in-
hibition of the production of inflammatory mediators 
such as MCP-1, IL-6, TNF-α, transforming growth fac-
tor-β1 (TGFβ-1), and CRP. Additionally, they can de-
crease adipokine-induced inflammation, modify the 
redox state, and impact the RAS and hemodynamics to 
suppress inflammation [33]. 

The anti-inflammatory characteristics of SGLT2-I 
have been linked to their significant reno-protective ef-
fect. Studies on diabetic mice indicated that empagli-
flozin reduces albuminuria and glomerular hyperfiltra-
tion and blocks the production of inflammatory markers 
in the kidneys [34]. Studies in Akita mice have shown 
that dapagliflozin has protective effects on the kidneys, 
as it increases renal macrophage tissue accumulation 
and decreases interstitial fibrosis compared to insulin 
[35]. Furthermore, the anti-inflammatory effect of 
SGLT2-I is believed to be accountable for the cardiopro-
tective effects. In addition, improvement in nonalcohol-
ic fatty liver disease (NAFLD) indices has been docu-
mented [36].

Regarding diabetic retinopathy, SGLT2-I-induced 
low-grade ketonemia, thus produces enhanced fuel en-
ergetics and reduced hypoxia, and also through the an-
ti-inflammatory and antioxidative stress characteristics 
of ketones. Also, by improving glycemia and lowering 
blood pressure, SGLT2-I could impact the progression 
of diabetic retinopathy [37].

Dipeptidyl peptidase-4 inhibitors (DPP-4-I) and 
glucagon-like peptide-1 receptor agonists  
(GLP-1-Ra)

DPP-4-I are effectively reducing blood glucose levels 
by inhibiting the inactivation of GLP-1. The administra-
tion of GLP-1-Ra results in improved action of GLP-1 
[38]. Both DPP-4-I and GLP-1-Ra possess modulatory 
properties that influence inflammatory responses. The 
inhibition of DPP-4 by sitagliptin effectively reduced in-
flammation in adipocytes and liver cells [39]. 

Additionally, the GLP-1-Ra exendin-4 was shown to 
suppress inflammation, particularly in adipocytes.  
Results from studies have demonstrated the strong  
anti-inflammatory effects of GLP-1-Ra in both in vitro 
and in vivo experiments [35,40]. Clinical studies have 
demonstrated that GLP-1-Ra successfully repressed the 
progression of diabetic nephropathy and enhanced re-
nal function by suppressing inflammatory responses 
within the kidneys [41,42]. Similar findings were ob-
served with DPP-4-I, which reduced early kidney dam-
age and minimized albuminuria in a rat model of diabe-
tes through the suppression of inflammatory responses. 
DPP-4-I exerts a direct inhibitory effect on the genera-
tion of inflammatory cytokines by suppressing the  
activity of NF-kappa B in the renal glomeruli. Another 
possible effect might arise from their antioxidative 
characteristics, which could lead to a reduction in in-
flammation [43].

The anti-inflammatory properties of GLP-1-Ra may 
be used to treat neurodegenerative disorders. Recent 
research on Alzheimer's disease shows that liraglutide 
treatment can suppress inflammation in the brain while 
also having restorative benefits [44]. The inhibitory im-
pact of exendin-4 on microglial activation was empha-
sized by Kim et al., indicating its potential therapeutic 
application in the management of Parkinson's disease 
[45]. DPP4-I also appears to lessen peripheral endothe-
lial dysfunction and arterial stiffness as measured by 
pulse wave velocity [46]. Regarding retinopathy, no 
available large randomized clinical trials are focusing  
on the effect of DPP-4-I and GLP-1-Ra on diabetic retin-
opathy [47]. 

Alpha-glucosidase inhibitors (AG-I)
AG-I acts effectively by suppressing the activity of 

alpha-glucosidase inside the brush border of the gut. 
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TABLE 1. Comparison of the anti-inflammatory effect of anti-diabetics and correlation with complications

Drug Group Complications correlation with  
anti-inflammatory effect

Anti-Inflammatory 
strength Reference

TAZDs Kidney complications reduction
Novel therapeutic strategy for neuropathic pain

Potent [25]

Biguanides Cardiovascular complications reduction Moderate [20]

SGLT-2 inhibitors Kidney complications reduction 
Cardiovascular complications reduction
Eye complications reduction
Improvement of NAFLD

Moderate [40]

DDP-4 inhibitors Kidney complications reduction
Cardiovascular complications reduction

Moderate [40]

GLP-1 receptor 
agonists

Kidney complications reduction
Improvement of neurodegenerative diseases

Moderate [40]

α-glucosidase 
inhibitors

No direct evidence of a correlation Moderate [48]

Sulfonylurea No direct evidence of a correlation Weak [17]

Meglitinides No direct evidence of a correlation Weak [32]

Several studies have shown that miglitol can inhibit the 
production of IL‐1β, TNF‐α, and other inflammatory  
cytokines in peripheral leukocytes of rats with diabetes, 
this observation implies a potential decrease in inflam-
mation. Currently, there is no available evidence on the 
clinical effect of AG-I on inflammation in vascular tissue 
and the kidney (Table 1) [17,48].

CONCLUSIONS

Individuals with diabetes have an activated immune 
system with elevated levels of inflammatory mediators 
and pro-inflammatory cytokines. 

Diabetes and its related complications could be 
worsened by such inflammation. Targeting inflamma-
tion may produce obvious effects in improving the clin-
ical condition of diabetic patients and reducing the pro-
gression of complications. The majority of antidiabetic 
drugs pose an indirect anti-inflammatory effect through 
the hypoglycemic effect. However, many antidiabetics 
have an additional anti-inflammatory mechanism inde-
pendently of their hypoglycemic effects, which aug-
ments their anti-inflammatory effects and subsequent-
ly, further reduces the risk of diabetic complications. To 
sum up, TAZDs have a potent anti-inflammatory effect 
and are recommended for diabetic nephropathy. In ad-
dition, a novel therapeutic approach for the manage-
ment of neuropathic pain is the production of hyperal-
gesia by PPAR-γ agonists. The anti-inflammatory action 
of metformin is prominent and effective in reducing the 
risk of CVD in diabetic patients with high risk of CVD. 

Otherwise, actions on the kidney and the nervous sys-
tem fail to produce clinical benefits in such patients, 
and further investigations are required. The anti-in-
flammatory characteristics of SGLT2-I, DPP-4-I, and 
GLP-1-Ra are less potent than those of TAZDs. SGLT2-I 
have been linked to their significant protective effect on 
the kidney, and it is effective in reducing ocular and car-
diovascular complications. DPP-4-I are useful in reduc-
ing renal and cardiovascular complications. GLP-1-Ra 
reduces the risk of neurodegenerative and renal diseas-
es. Regarding sulfonylurea, meglitinides, and α-glucosi-
dase inhibitors, the lack of large trials is a major limita-
tion in drawing safe conclusions about the effectiveness 
of their anti-inflammatory characteristics in reducing 
diabetic complications.
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