New aspects detached from the molecular landscape of dental caries process

Alexandra TOTAN¹, Marina Melescanu IMRE², Oana Elena AMZA³, Angelica BENCZE⁴, Ana Maria Cristina TANCU²

¹ Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest
² Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest
³ Department of Endodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest
⁴ Department of Orthodontics and Dento-Facial Orthopedics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest

Abstract

Dental caries are considered an irreversible pathological process of teeth calcified tissue, characterized by demineralization and further tooth organic substance destruction, finally triggering the cavity formation. The dynamic demineralization process occurs several times during 24 h, but, usually, is balanced by the salivary buffering activity. However, this balance disturbance will trigger caries progression, which will induce several dentin modifications: mineral content reduction, increased micro- and nano-porosity, due to dentin collagen structure modifications, and redistribution of non-collagenous proteins. During carious lesion evolution, after dentin demineralization, the next step is the collagenous organic matrix destruction. Dentinal and salivary proteases (mainly MMPs, together with cathepsins) should be regarded as important targets for the therapeutic strategies of carious lesions.

Keywords: dental caries, saliva, biochemical interactions

INTRODUCTION

Dentin should be regarded as a natural composite consisting of a collagen organic matrix mineralized with nanosized hydroxyapatite crystals [1].

Dental caries are considered an irreversible pathological process of teeth calcified tissue, characterized by demineralization and further tooth organic substance destruction, finally triggering the cavity formation [1]. Dentin carious lesion progression requires, as a first step, a bacterial attack along the dentin-enamel junction [1].

Then, during the demineralization phase of the cariogenic process, hydroxyapatite crystals are dissolved by the organic acids formed in the bacterial metabolism. When the local pH falls below 5.5, these bacterial organic acids are able diffuse into the mineralized dental tissues [1].

The dynamic demineralization process occurs several times during 24 h, but, usually, is balanced by the...
salivary buffering activity [1]. Normally, saliva is able to supports the remineralization processes. However, this balance disturbance will trigger caries progression, which will induce several dentin modifications: mineral content reduction, increased micro- and nano-porosity, due to dentin collagen structure modifications, and re-distribution of non-collagenous proteins [1,2].

During carious lesion evolution, after dentin de-mineralization, the next step is the collagenous organic matrix destruction, first supposed to be the result of the bacterial proteases’ activity [1,2].

PROTEASES – IMPORTANT ACTORS ON THE MOLECULAR STAGE OF DENTAL CARIES

Binderman was the first who reported a collagenolytic activity in both, healthy and carious dentin [3]. Collagenase (matrix metalloproteinase-8 (MMP-8)), gelatinases (MMP-2 and -9), stromelysin (MMP-3), and MMP-20 are most recently identified as the main actors responsible for this activity, being able to degrade all the extracellular collagen matrix components [4-13].

Dentin MMPs are synthesized by odontoblasts during dentin matrix secretion. It has been suggested that these enzymes may play key roles in dentin genesis and maturation [4,6-13], however, MMPs’ biochemical roles in dentin are still unclear. Experimental data have sustained their involvement in peritubular and tertiary dentin generation and the release of dentinal growth factors [14-17].

Physiological aging and disease usually induce dentin modifications, affecting its biochemical and biomechanical properties [14].

Despite the fact that mineralized dentin does not suffer significant modifications, however, inside the dentinal tubules, pre-dentin and non-mineralized dentin may be altered in response to various functional necessities [18]. It has been suggested that the alterations in the inter-tubular collagen matrix, orchestrated by MMPs, are main contributors to these structural responses [18]. Arola et al. pointed that dentin’s important mechanical properties, i.e. fatigue resistance and flexural strength, significantly change with age [18].

Cysteine cathepsins represent another important proteases family identified in dentin [19,20]. Cathepsins, similar to MMPs, are involved in ECM degradation, in both physiological and pathological processes [21-24]. In the oral cavity environment, cathepsins have also been considered important players in carious lesions’ progression and over time adhesive restorations’ failure [1,21-24].

MMPs, as well as cysteine cathepsins have been identified in saliva, mineralized dentin, and dentinal fluid. Currently, these enzymes are considered main actors of the dentin cariogenic process, from the early phases of demineralization to the cavity formation [1,25]. Shimada et al. highlighted that cariogenic bacteria can’t degrade dentin collagenous matrix after demineralization [26]. Moreover, the bacterial cells from in situ created dentin lesions were unable to induce collagen degradation in vitro [26]. It also has been reported that in acidic environments the purified bacterial collagenases had low catalytic activity [26]. All these data have led to the idea that the degradation of the organic matrix within dentin carious lesions may be caused especially by the host MMPs [4,16].

After the collagen matrix mineralization, MMPs, as inactive forms, will be trapped within the mineralized collagen matrix [16], may be re-exposed and activated during the evolution of dental cariogenic processes, probably, by the acidic environment created by the bacterial organic acids [4,6,16,21]. Although the active MMPs are stable in acid medium, their optimal activity pH is neutral [4,6,16,21]. The acid medium neutralization can be achieved by the dentinal buffering systems or through the salivary buffering activity, thus making possible the collagen matrix degradation by pH - activated MMPs [1,4]. The MMPs, that could become proteolytically active during the dentin cariogenic process, include:

- collagenases (MMP-1, MMP-8)
- gelatinases (MMP-2, MMP-9) with telopeptidase activity
- stromelysin (MMP-3)
- enamelysin (MMP-20) [4, 8, 12, 25, 27].

It also has been suggested that cysteine cathepsins may be involved in dentinal carious lesions initiation and progression [20,25]. Nascimento et al. and Vidal et al. highlighted that odontoblast or pulp-derived cysteine cathepsin activity level varies depending on the different compartments of the carious lesion [20,25]. Nascimento et al. reported that within carious dentin the cysteine cathepsin activity significantly increased with increasing depth toward the pulp [20].

Once the carious lesions become active, they begin to demineralize and remineralize cyclically. Their pH will cycle from 5.0 (inappropriate for MMPs, but optimum for cathepsin activity), to 7.0 (inappropriate for the cathepsin activity, but the optimum for MMPs). In this way, a significant proteolytic activity (due to cathepsins or MMPs activity) is insured for long periods of time.

The organic matrix degradation may also be caused by the salivary proteases’ activity [4,27,28]. Several salivary MMPs have been identified in both gingival crevicular fluid and total saliva [29]. MMP-8 and MMP-9 are the most abundant salivary MMPs and predominate in dentin caries lesions [4,27,28]. Salivary MMPs...
are also able to efficiently degrade the exposed dentinal collagen fibrils [4]. Experimental data revealed higher MMP activities in active carious lesions, compared with the chronic ones [20].

It is considered that in caries-affected dentin the collagen matrix may remain mostly unaffected, until become seriously demineralized. It is most probably that the dentinal collagen fibers still retain the capacity to re-mineralize, even after relatively mild demineralization [24,25,30,31].

Given that at least MMP-2, MMP -9 and cysteine cathepsin K are able to cleave off the C-terminal end of the collagen molecule, dentinal MMPs and cysteine cathepsins should be regarded as important players in the CTX (carboxyterminal telopeptides, cleaved by cathepsins) and telopeptide fragments - ICTP (carboxyterminal telopeptides of type I collagen, cleaved by MMPs) releasing process [24,25,30,31].

CONCLUSIONS

All those presented above outline the idea that dentinal and salivary MMPs, together with cathepsins, should be regarded as important targets for the therapeutic strategies of carious lesions.

Due to MMPs and cathepsins involvement in caries progression and bond stability, these enzymes’ inhibitors may play a crucial role in the new preventive and therapeutic protocols’ elaboration. However, more experimental and clinical studies are needed on new compounds able to inhibit these proteases’ activity inhibition and, thus, to contribute effectively to caries prevention and improved stability of the adhesive interface.

Acknowledgement

All authors have equally contributed to this article.

