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Abstract
AKT or protein kinase B is a serine / threonine kinase that plays a crucial role in cell proliferation, survival, 

growth, and glucose metabolism. So far, there have been discovered 3 isoforms of AKT, the most widespread 
in the tissues is AKT1. All isoforms present similar structure being activated by the phosphorylation process 
at the level of 2 hydroxyl amino acids serine and threonine. After activation, AKT will phosphorylate a 
number of protein substrates which it will activate or inhibit, finally leading to lipids, proteins, glycogen or 
nucleotides synthesis. In this review, we will discuss the structure of these protein kinases, the molecular 
mechanism of activation and the phosphorylation effects on other cellular structures.
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AKT identification and structure 

AKT or protein kinase B belongs to the super 
protein kinase family named AGC after the kinases 
members, c-AMP-dependent protein kinase A 
(PKA), protein kinase G (PKG) and protein kinase C 
(PKC). AGC kinases exhibited similar activation 
mechanisms and structural homology within the 
catalytic domain (1-3).

AKT is a serine / threonine kinase that was ini-
tially discovered in 1987 by Stefan Staal as the like-

ly transforming gene component, v-AKT of AKT8 
provirus. In the same study, Staal identified the 
human homologue of v-Akt, AKT 1 which was in-
creased at patients with gastric adenocarcinomas 
(4). 

In 1995, Richard Roth and co-workers discov-
ered that AKT is activated by insulin (5). In mam-
mals have been identified three AKT genes, termed 
AKT1/PKBα, AKT2/PKBβ and the last one AKT3 /
PKBŸ. Of all 3 isoforms, AKT 1 is the most widely 
distributed at the tissue level, being involved in 
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cell growth and survival (6-8). AKT 2 is found at the 
muscular and adipocyte levels contributing to in-
sulin mediated glucose homeostasis (8,9). The last 
isoform, AKT 3, has been identified especially at 
brain and endocrine tissues (testes) levels (8-11). 

All AKT izoforms have a highly conserved struc-
ture: an N-terminal pleckstrin domain or PH do-
main, a kinase domain and a C-terminal regulatory 
tail which contains the hydrophobic motif (11). 

The N-terminal domain contains about 100 
amino acids, which is similar to other protein ki-
nases that binds 3-phosphoinositides and inter-
acts with membrane lipid products such as phos-
photidylinosiol 3,4,5 trisphosphate (PIP3) 
produced by phosphatidylinositol 3-kinase (PI3K)
(11-13).

At catalytic domain level phosphorylation of 
the Thr residue occurs both in the case of PKB but 
also in PKA and PKC, thus leading to the partial ac-
tivation of these protein kinases (11,15,16). 

The C-terminal domain contains about 40 ami-
no acids having the following sequence in hydro-
phobic motif F-X-X-F / Y-Ser / Thr-Y / F, where X can 
be any amino acid. For the whole AGC protein ki-
nases family phosphorylation of Ser and Thr resi-
dues is required for full activation in this hydro-
phobic motif (11). Akt 3 isoforms phosphorylate 
various substrates that contain in the C-terminal 
region the following amino acid sequence: RXRXX-
Ser /Thr, for exemple PRAS40 (proline-rich Akt 
substrate of 40 kDa) can be phosphorylated by all 
3 isoforms but Akt 1 phosphorylates actin associ-
ated with palladin protein(11,17).

AKT activation

AKT signaling pathway is activated by various 
stimuli that are capable of inducing PIP3 formation 
by PI3K such as tyrosine kinase receptors, integ-
rins, T and B cell receptors, cytokine receptors or 
receptors coupled with G proteins. In the extracel-
lular domain of tyrosine kinase receptors (RTK), 
growth factors binds and will cause autophospho-
rylation of the receptor. Class 1 of PI3K binds to 
the phosphorylated receptor directly or via an 
adapter protein such as insulin receptor substrate 
1/2 (IRS 1/IRS2).The PI3Ks will further catalyze 
phosphorylation of phosphatidyl inositol 4, 5 bis-
phostat ( PIP2) to PIP3(11,17). 

PTEN (phosphate and tensin homology) per-
forms dephosphorylation of PIP3 at PIP2. The in-
teraction between AKT PH domain and 3-phos-
phoinositol induces a conformational change in 
AKT and PDK1 (3-phosphoinositide-dependent 
protein kinase 1) will phosphorylate Thr 308. For 

maximum activity, mTOR (mammalian target of 
rapamycin complex) will phosphorylate AKT Ser 
473 from hydrofobic motif (11,17,18).

Dephosphorylation of the 2 hydroxyl amino ac-
ids is carried out by PP2A (protein phosphatase 
2A) specific Thr 308 and PHLPP (PH-domain leu-
cine-rich-repeat-containing protein phosphatases) 
for Ser 473. Once activated Akt will dissociate from 
the membrane and further phosphorylate a wide 
variety of substrates, which are contained in the 
structure Ser or Thr such as protein or lipid kinas-
es, transcriptional factors, metabolic enzymes 
(11,17).

AKT and biological effects

Active AKT is involved in cell survival, growth 
and  proliferation and glucose uptake as can be 
seen from Table 1. 

The AKT / PKB signaling pathway plays a crucial 
role in regulating cell survival, helping the cells in 
the fight against apoptosis. Apoptosis is character-
ized in mammalian cells as an early process that is 
associated with the loss of mitochondrial integrity 
followed by the release of cytochrome c.

The cytochrome c released then binds to the 
apoptotic protease-activating factor (Apaf -1) 
which it activates. Apaf-1 binds and activates ca-
pase-9 (proteases with cysteine residues), and ini-
tiates a caspase cascade, which are regulated by 
anti-apoptotic effectors (Bcl-2 and Bcl-xL) or 
pro-apoptotic proteins (Bad, Bid, Bik, Bax and Bak) 
(19,20).

Bad is a member of the Bcl-2 protein family 
that is phosphorylated by AKT on Ser 136, so it no 
longer exhibits pro-apoptotic activity at the cell 
level and promotes cell survival (20,21,22). 

SAK (stress-activated protein kinase) is a family 
of protein kinases that regulates cellular response 
to stress or cytokines, consisting of 2 groups of ki-
nases: JNK and p38 MAP kinases (23,24). 

ASK1 (apoptosis signal-regulating kinase) is a 
MAP kinase that usually induces apoptosis, will in-
teract with AKT and is phosphorylated at Ser 83, 
thus inhibiting the apoptotic process and promot-
ing cell survival. AKT will phosphorylate both MLK3 
(mixed lineage kinase 3) on Ser 674 and SEK 1 on 
Ser 78, the activity of these kinases will also be in-
hibited as in the case of ASK1, promoting cell sur-
vival and not apoptosis (25,26).

AKT promotes the regulation of cell survival 
through transcriptional factors that are responsi-
ble for pro and anti-apoptotic genes. The family of 
Fox or FH (forkhead) transcriptional factors has 
four Fox protein isoforms:Fox01, Fox02, Fox03, 
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Fox04 which can be directly phosphorylated by 
AKT. Phosphorylated Fox proteins promote cell 
survival through their action on specific target 
genes that normally inhibit cell survival (27,28).

Family of nuclear transcription factor kB (NF-
kB) is a key regulator of immune response, and a 
deregulation of its activity leads to the develop-
ment of pathologies such as autoimmune diseases 
and cancer (29,30). 

NF-kB is activated by phosphorylation of the 
kinase complex IkB (inhibitor of kappa B kinases), 
which leads to its nuclear translocation and tran-
scription of specific survival genes for Bcl-xL and 
caspase inhibitors (30-32).

Mdm2 (murine double minute) is an oncogene 
product induced by p53, the major regulator of 
cell death in response to stress, especially when 
DNA damage occurs. AKT phosphorylates Mdm2 
at 2 Ser residues, resulting in promoting inactiva-
tion or degradation of p53 and undermine the p53 
to mediate pro-apoptotic transcriptional respons-
es (33-35). CREB (Cyclic AMP (Camp)-response el-
ement binding protein) is a transcription factor, 
which can be phosphorylated by AKT on Ser 133, 
inducing expression of some antiapoptotic genes 
such as Bcl-2 (36).

YAP (Yes-associated protein) is phosphorylated 
by AKT on Ser 127 and in the phosphorylated form 
is a suppressor for apoptosis mediated by p73 
transcriptional activity (37,38).

AKT is involved in regulating cell growth 
through its effects on the tuberous sclerosis com-
plex 1 and 2 (TSC1 / TSC2) and the mTORC signal-
ing pathway. The primary mechanism by which 
AKT activates mTORC is the phosphorylation on 
Ser 2448 and TSC complex inhibition . TSC complex 

acts as a GAP specific for Ras-related GTPase Rheb, 
which will promote conversion of Rheb-GDP to 
Rheb-GTP and mTORC1 activation, which will fur-
ther determine synthesis of proteins, lipids and 
nucleotides and autophagy (39). mTOR phospho-
rylates S6K1( kinases p70S6K1) and 
4E-BP1(eIF4E-binding protein 1), leading to in-
creased translation and synthesis of cell-cycle-reg-
ulating and ribosomal proteins(17,39).

AKT is involved in phosphorylation of glycogen 
synthase kinase 3 at the N-terminus Ser residue, 
GSK-3α, Ser 21 and for GSK3β, Ser 39. Phosphoryl-
ated GSK3, inhibits its kinase activity and also in-
hibits glycogen synthase. AKT-mediated inhibition 
of GSK3 activity, but dephosphorylates and acti-
vates glycogen synthase via PP1 (phosphoprotein 
phosphatase) which is activated by insulin or glu-
cose leading to glycogen synthesis (17).

There is a close relationship between AKT and 
GSK3 in terms of metabolism and cell survival: 
phosphorylation and inbibation of GSK-3 mediates 
some of the effects of AKT. Phosphorylation of 
GSK-3 by AKT was considered to be a mechanism 
by which cell proliferation is also achieved (11,17).

AKT can phosphorylates protein tyrosine phos-
phatase 1B (PTB1B), which prevents insulin recep-
tor (IR) dephosphorylation and translocation of 
glucose transporter 4 (GLUT 4) from vesicular in-
tracellular compartments to the plasma mem-
brane and intracellular glucose uptake (11,17).

AKT is involved in the control of the cell cycle 
beeing essential for meiosis, and dispensable for 
mitosis, by phosphorylating some target proteins 
that will lead to their activation or inactivation. 
AKT activetes cyclin B/CDK1 by phosphorylation, 
and coordinates the activation of cyclin B/cdk1 

Table 1. The effects of AKT phosphorylation on different substrates (adapted from) (11).

Cellular function Substrate Amino acid AKT phosphorylation effect 
Cell survival BAD

MLK3
ASK1
SEK1
FOX01
FOX03
FOX04
MDM2
Ik-B kinase
CREB
YAP

Ser 136
Ser 674
Ser 83
Ser 78
Thr 24, Ser 256, 319
Thr 32, Ser 253, 315
Thr 28, Ser 139, 258
Ser 133
Thr 23
Ser133
Ser 127

Release of Bcl-2 proteins
Apoptosis inhibition
Apoptosis inhibition
Apoptosis inhibition
Apoptosis inhibition
Apoptosis inhibition
Apoptosis inhibition
Inactivation of p53
Transcriptional activity of NF-kB
Activation of antiapoptotic genes
Suppresor of apoptosis

Cell growth TSC complex
(TSC1/TSC2)

Ser 939,981, 1130, 
1132,Thr 11462

Synthesis of proteins, lipids and 
nucleodites

Glucose 
homeostasis

GSK3α
GSK3β

Ser 21
Ser9

Glycogen synthesis
Glycogen synthesis

Cell proliferation Cyclin D, 
Cyclin B

Thr 58, 286
Ser 354

G1/S progression
G2/M transition
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(cyclin dependent kinase 1) at the centrosome and 
in the nucleus. Cyclins B, D,E are activated which 
will finally activate cdk2 and cdk1 which will deter-
mine G2 / M transition, cdk4 / 6 and chk2 will de-
termine G1 / S transition (40).

Conclusions

AKT is a serine-threonine kinase that is activat-
ed by phosphorylation, which further phosphoryl-

ates a number of proteins that contain Ser or Thr 
residues. These phosphorylations are essential for 
cell proliferation, growth and survival. In conclu-
sion, the study of molecular mechanisms of AKT 
activation and further phosphorylation are crucial 
for a healthy human body.
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